No subscription or hidden extras
Read through the most famous quotes by topic #astronomy
His laws changed all of physics and astronomy. His laws made it possible to calculate the mass of the sun and planets. The way it's done is immensely beautiful. If you know the orbital period of any planet, say, Jupiter or the Earth and you know its distance to the Sun; you can calculate the mass of the Sun. Doesn't this sound like magic? We can carry this one step further - if you know the orbital period of one of Jupiter's bright moons, discovered by Galileo in 1609, and you know the distance between Jupiter and that moon, you can calculate the mass of Jupiter. Therefore, if you know the orbital period of the moon around the Earth (it's 27.32 days), and you know the mean distance between the Earth and the moon (it's about 200,039 miles), then you can calculate to a high degree of accuracy the mass of the Earth. … But Newton's laws reach far beyond our solar system. They dictate and explain the motion of stars, binary stars, star clusters, galaxies and even clusters of galaxies. And Newton's laws deserve credit for the 20th century discovery of what we call dark matter. His laws are beautiful. Breathtakingly simple and incredibly powerful at the same time. They explain so much and the range of phenomena they clarify is mind boggling. By bringing together the physics of motion, of interaction between objects and of planetary movements, Newton brought a new kind of order to astronomical measurements, showing how, what had been a jumble of confused observations made through the centuries were all interconnected. ↗
The knowledge that the atoms that comprise life on earth - the atoms that make up the human body, are traceable to the crucibles that cooked light elements into heavy elements in their core under extreme temperatures and pressures. These stars- the high mass ones among them- went unstable in their later years- they collapsed and then exploded- scattering their enriched guts across the galaxy- guts made of carbon, nitrogen, oxygen, and all the fundamental ingredients of life itself. These ingredients become part of gas clouds that condense, collapse, form the next generation of solar systems- stars with orbiting planets. And those planets now have the ingredients for life itself. So that when I look up at the night sky, and I know that yes we are part of this universe, we are in this universe, but perhaps more important than both of those facts is that the universe is in us. When I reflect on that fact, I look up- many people feel small, cause their small and the universe is big. But I feel big because my atoms came from those stars. ↗
Let's grant that the stars are scattered through space, hither and yon. But how hither, and how yon? To the unaided eye the brightest stars are more than a hundred times brighter than the dimmest. So the dim ones are obviously a hundred times farther away from Earth, aren't they? Nope. That simple argument boldly assumes that all stars are intrinsically equally luminous, automatically making the near ones brighter than the far ones. Stars, however, come in a staggering range of luminosities, spanning ten orders of magnitude ten powers of ten. So the brightest stars are not necessarily the ones closest to Earth. In fact, most of the stars you see in the night sky are of the highly luminous variety, and they lie extraordinarily far away. If most of the stars we see are highly luminous, then surely those stars are common throughout the galaxy. Nope again. High-luminosity stars are the rarest. In any given volume of space, they're outnumbered by the low-luminosity stars a thousand to one. It's the prodigious energy output of high-luminosity stars that enables you to see them across such large volumes of space. ↗
Any patch of sunlight in a wood will show you something about the sun which you could never get from reading books on astronomy. These pure and spontaneous pleasures are ‘patches of Godlight’ in the woods of our experience. ↗
#experience #god #sunlight #woods #experience